Systematic SPE Method Development A method development strategy leading to robust and reliable SPE methods

Frank Michel, Klaus Buckendahl, SIGMA-ALDRICH Chemie GmbH Eschenstraße 5, 82024 Taufkirchen, Germany

How method development is often approached

Incorporate the sample matrix or real samples immediately and...

- Choose a very generic or robust method
- Duplicate an existing/similar application from a previous method
- Copy an existing application from an SPE vendor or literature reference
- Go to the local SPE "guru" for help

Basic Rules of Solid Phase Extraction

- Analyte must adsorb onto the SPE Sorbent
- There must be sufficient resident time for analyte-sorbent interaction to occur
- Must be able to selectively remove endogenous sample interferences from the analyte
- Analyte must be able to be removed from the sorbent

Solid Phase Extraction

The Result:

Sample is in a simpler matrix Sample is semi-purified Sample is trace enriched Sample is chromatography friendly

Major Concerns:

Is **recovery** high enough?

Is the product/method yielding reproducible results?

Is the sample **clean** enough for analysis?

Possible Problems

- Dealing with novel Analytes different Behavior
- Poor Recovery. Is it due to...
 - Poor Retention?
 - Pre-mature Elution?
 - Over Retention?
- Poor Reproducibility
 - Typically caused by one or more inadequate steps. Which one?
- Insufficient clean-up
 - Stronger wash solvent? Different SPE phase?

How to solve the Problems?

- By almost randomly "Try and Error"
 - might lead to Time consuming Troubleshooting
 - might be less less robust
- Systematic approach

⇒ **POS** Profile Optimized Solid phase extraction

or <u>Selectivity</u> Profiled SPE (SPS)

What is POS all about? → Adjust Selectivity

"Selectivity -

the ability of the sorbent and extraction method to discriminate between the analyte(s) of interest and endogenous interferences within the sample matrix"

POS Idea:

- 2-3 Experiments w/ Standards to
 - Select Hardware and Phase
 - Understand the Analyte/Sorbent Interaction for optimal Conditions
 - Systematically adjust 2 main Variables (organic strength & pH)

-> Greater Confidence and Efficiency

Profile Optimized SPE (POS) Method Development - Step1

© 2009 Sigma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH®

Determine Sample Prep Objectives

- What level of interference removal is required for the analysis?
- What solvent should the analyte(s) be in for optimal analysis?
- Is concentration required for optimal sensitivity?
- What resources are available to invest towards method development and routine analysis (time, personnel, instrument availability, etc.)?

Consider the Sample Matrix

- What is the sample volume? -> Hardware?
 - Configuration of SPE (Tube, Filter, 96-Well plates)
- What are the endogenous sample interferences?
- Is the sample matrix more polar or non-polar?

Serum, Plasma, Urine = <u>Polar</u>
 → Reversed-Phase or Ion-Exchange

 Organic synthesis reactions or extractions = <u>Non-Polar</u>
 → Normal-Phase

Consider the analyte(s) of interest

What functional groups may influence the analytes' solubility (Log P o/w), polarity, ionization state (pKa), etc.?

Neutral Groups:

Carbonyl

• Ether

• Nitrile

Hydrophilic Groups:

- Hydroxyl -OH
- Amino -NH₂ • Carboxyl -COOH
- Carboxyl -C • Amido -C
- Guanidino
- 4° Amine
- Sulfate
- -CONH₂ -NH(C=NH)NH₃⁺ -NR₃⁺

Hydrophobic Groups:

- Carbon-Carbon
- Carbon-Hydrogen
- Carbon-Halogen
- Olefin

-C=O

-**O**-R

-C=N

• Aromatic

- -C-C -C-H
- -C-Cl
- -C=C

© 2009 Sigma-Aldrich Co. All rights reserved.

Phase & Hardware Selection

Summarizing the considerations

- Sample Matrix
- Analyte of interest

- -> choose most ideal
- Retention Mechanism,
- Phase Chemistry
- Hardware Configuration

for achieving the pre-determined sample prep objectives!

Here's an example: TCAs from Serum

SIGMA-ALDRICH[®]

POS Example: Tricyclic Antidepressants (TCAs) from Sheep Serum

Determine Sample Prep Objectives:

- Develop a simple extraction procedure
- Achieve ≥ 85% Recovery & Excellent Reproducibility for HPLC-UV Quantitation
- Endogenous serum interferences should be substantially removed
 - Simplifies HPLC resolution, prolongs Column Life, & Minimizes misleading background responses
- Achieve detection/quantitation limits of 0.25-1.0µg/mL Serum
- Post SPE sample matrix should be a buffered solvent compatible with HPLC mobile phase

POS Example: TCAs from Sheep Serum

Consider the Sample Matrix:

- Sample Volume 0.5 mL Sheep Serum
- Serum is the aqueous portion of blood = Polar
 - Platelets, corpuscles, and clotting factors have been removed
- Endogenous Interferences:
 - albumin, globulins, lipids, salts and carbohydrates

Tricyclic Antidepressants TCAs

POS Example: TCAs from Sheep Serum

- Dibenzocycloheptene skeleton = excellent hydrophobic foot print for potential reversed-phase interaction.
- 2° amine: basic functional group w/ a pKa of ~9. Very useful for controlling analyte's ionization state:
- At pH ≥11, the 2° or 3° amine functional group should be neutralized.
- At pH ≤ 7, the amine group should be ionized.

The pH has influence & can be used for retention control as different ionic forms retain differently on a given sorbent.

POS Example: TCAs from Sheep Serum SPE Phase & Hardware Selection

- Sample volume = 0.5mL
 - 96-well plate or 1mL SPE tubes
- Smaller bed weights (25-100mg)
 - Smaller elution volumes = higher Analyte Concentrations
- Aqueous sample matrix + hydrophobic character of TCAs
 - Excellent candidate for Reversed-Phase SPE
 - C18 will ensure optimal retention for the potential use of stronger wash eluents
 - = Maximize Sample Clean-Up

1st Choice = Discovery <u>DSC-18</u> <u>SPE-96 Well Plate</u>

<u>Profile Optimized SPE (POS)</u> Method Development Step 2

© 2009 Sigma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH®

Experimentation, Evaluation, Incorporate Sample Matrix & Troubleshoot Method

Experimentation	 Develop Analytical Method (LC, GC, etc.) Using standards and buffered/organically modified solutions, identify and test key variable parameters (pH, organic strength, etc.) 	
Evaluation of Selectivity	 Perform mass-balance analysis on collected eluates for each step of the extraction procedure Determine analyte behavior on sorbent in response to changing extraction conditions -> 	
Incorporate Sample matrix/ Troubleshoot	 Define method and incorporate sample matrix Make determinations of recovery, matrix effect, cleanliness, and LC/GC resolution 	

How to control Selectivity ?

Organic Strength-

Higher (and/or stronger) organic content will cause less analyte retention via *reversed-phase* mechanism

RP = aqueous loading and wash with low organic

pH-

Adjusting the pH of the MP +/- 2 pH units relative to the analyte's pKa will make the molecule fully charged or fully ionized.

In RP SPE, charged molecules will not adsorb whereas un-charged molecules will more likely adsorb

POS Example: TCAs from Sheep Serum

- Load Optimization

Ensure retention of the analytes of interest

- 1. Conditions DSC-18 wells with 1mL MeOH
- 2. Equilibrate DSC-18 wells with $1 \text{ mL DI H}_2\text{O}$
- 3. Load 1mL 5µg/mL* standard test mix prepared at neutral (DI H_2O) and basic pH (1% NH_4OH).
- 4. Collect Eluate and analyze via HPLC-UV

*Note: Load concentration was increased (Method request was 0.25-1.0µg/mL) to provide adequate signal response for detecting small analyte breakthrough percentages. Also note that acidic load conditions were avoided.

POS Example: TCAs from Sheep Serum - Load Optimization

Load Optimization Evaluation:

A lack of analyte presence in the eluate was found for both pH conditions -Indicates adequate retention for both neutral and basic load conditions

 \Rightarrow Basic pH was chosen to ensure maximum retention for the three basic analytes.

 \rightarrow Stronger retention permits the potential use of stronger wash solvents increasing overall sample clean-up

POS Example: TCAs from Sheep Serum

- Wash/Elute Profile

Determine analyte retention and elution patterns as a function of pH & %-Organic

- 1. Conditions DSC-18 wells with 1mL MeOH
- 2. Equilibrate DSC-18 wells with 1mL DI H₂O
- 3. Load 1mL 5 μ g/mL standard test mix prepared at basic pH (1% NH₄OH).
- 4. Wash/Elute with 1mL of a test solvent ranging from 0-100% MeOH in 2% CH₃COOH (low pH), DI H₂O (neutral pH), and 2% NH₄OH (high pH)
- 5. Collect wash/elute eluate and analyze via HPLC-UV

POS Example: TCAs from Sheep Serum - Wash/Elute Profile

Evaluation

POS Example: TCAs from Sheep Serum - Wash/Elute Profile

Evaluation

POS Example: TCAs from Sheep Serum Incorporate Sample Matrix/Troubleshoot Method

Rule of Thumb

- "For many applications, recovery values observed for the real-matrix based solutions will parallel values obtained with standard solutions"
- Profiling major parameters affecting Analyte Retention/Elution
 - e.g. Major matrix components, Viscosity, Particles, Stability of Analyte in the Matrix and the Matrix it self

Serum

POS Example: TCAs from Sheep Serum

POS-Method on DSC-18 SPE-96 Well Plate (100mg/well):

- 1. Condition/Equilibrate w/ 1mL MeOH & 1mL DI H₂O
- Load 0.25-2.0µg/mL TCAs spiked in sheep serum diluted in 2% NH₄OH (1:1, v/v); n=3 for ea. concentration
- 3. Wash w/ 1mL <u>40% MeOH</u> in 2% NH₄OH
- 4. Elute w/ 1mL MeOH*
- 5. Evaporate eluate with N-purge (30° C; ~10min.), and reconstitute in 300 μ L MP
- * Although a 60% acidified may have been a potential elution eluant, in order to maintain sensitivity limits, further experimentation would be required to determine minimum elution volume

POS Method on DSC-18 Well Plate vs. Generic Method on Competitor Polymer Phase

Generic Method on Competitor Polymeric Phase (30mg/well):

- 1. Condition/Equilibrate w/ 1mL MeOH & 1mL DI H₂O
- 2. Load 0.25-2.0µg/mL TCAs spiked in sheep serum diluted in 2% NH_4OH (1:1, v/v); n=3 for ea. concentration
- 3. Wash w/ 1mL <u>5% MeOH</u>
- 4. Elute w/ 1mL MeOH
- 5. Evaporate eluate with N-purge (30° C; ~10min.), and reconstitute in 300µL Mobile Phase

Results

POS Method Using DSC-18 SPE-96 Well plate

HPLC Method:

Column:Discovery C18, 15cmx4.6mm, 5 μ m, & guard column & frit filter;Mobile Phase:MeCN: 25mM KH_2PO_4, pH 7 (45:55);Flow Rate:1.4mL/min; Temp: 30° C; Det.: UV, 254nm; Inj: 100 μ L

High Background; Misleading interfering responses

Generic Method Using

Results

Efficiency of Absolute Recovery of Tricyclic Antidepressants on POS Method Using Discovery DSC-18 SPE Vs. Generic Method Using Competitor Polymer Phase

Compound	Concentration	%Recovery ± RSD (n=3) on Discovery DSC-18	%Recovery ± RSD (n=3) on Competitor Polymer Phase
1. Doxepin	1.0µg/mL	90.8 ± 1.2%	108.8 ± 8.2%
	0.5µg/mL	91.1 ± 1.6%	127.6 ± 13.5%
	0.25µg/mL	89.2 ± 2.2%	167.8 ± 3.2%
2. Impipramine	1.0µg/mL	95.5 ± 2.5%	88.4 ± 5.6%
	0.5µg/mL	97.7 ± 0.6%	98.2 ± 14.7%
	0.25µg/mL	97.8 ± 3.7%	93.1 ± 0.3%
3. Amitryptyline	1.0µg/mL	91.0 ± 2.0%	92.4 ± 5.1%
	0.5µg/mL	87.4 ± 1.4%	104.9 ± 12.6%
	0.25µg/mL	89.5 ± 3.5%	133.5 ± 1.4%

Comparison Discussion

Cleaner Extracts:

 POS Method on DSC-C18 vs. Generic Method on a competitor polymeric phase shows cleaner extracts

Translates to

- Lower Background -> Increased Sensitivity
- No misleading overlapping Responses from Interferences
- Longer Column Life
- Simpler and shorter chromatographic Analysis
- More accurate Results

Summary – Systematic Method Development SPE

Phase and Hardware

- Pre-determining of sample prep objectives and carefully
- Considering sample matrix and analytes of interest
- → strongest candidate for SPE method development

Parameters

- Use Standards and testing key variables influencing Analyte Retention and Elution,
- Strategically manipulate and make quick adjustments to the Extraction Method

SIGMA-ALDRICH[®]

→ Meet the Sample Prep Objectives

SPE - Literature

Further Method Development Aids

Bulletin 910 "Guide to Solid Phase Extraction"

© 2009 Sigma-Aldrich Co. All rights reserved

Technical Report T403039 (FOP) "Systematic SPE Method Development"

SIGMA-ALDRICH®

SPE Brochure

- T402150 (FEB)
- 36 pages

 Complete list of SPE products and accessories

Thank You!!!

SCOVERY & Supelclean ENVI SPE Products

- for reliable & easy Sample Clean Up and Concentration -

- RP: DSC-18, DSC-18lt, DSC-8, DSC-Ph, DSC-CN, DPA-6S
 Supel-Select HLB
- NP: DSC-Si, DSC-Diol, DSC-CN, DSC-NH₂
- IE: DSC-NH₂, DSC-SAX, DSC-WCX, DSC-SCX
- Mixed Mode: DSC-MCAX (C8 & SCX)
- Adsorption: ENVI-Carb, ENVI-ChromP, ENVI-Florisil
- Special Ag-Ion, PSA, ENVI-carbon/PSA, Na_2SO_4 /Florisil
- MIP SupelMIPs Highly selective SPE
- HybridSPE[®] Phospholipid removal from Plasma & Serum Samples