SPE for analysis of environmental contaminants in water

Dr. Frank Michel frank.michel@sial.com

SIGMA-ALDRICH®

© 2012 Sigma-Aldrich Co. All rights reserved.

OUTLINE

Extraction Disks

- ENVI Disks vs. Empore
- Applications

Carbons

- ENVI-Carb
- ENVI-Carb Plus

SupelSelect HLB for extraction of PPCPs

Useful EPA 500 Series (drinking water) Accessories

P001063

Visiprep 5-Port Flask Manifold

Visiprep Lg. Vol. Sampler

ENVI-Disk Holder

ENVI-Disk Holder Manifold

Extraction Disks

4

© 2012 Sigma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH[®]

ENVI-Disk™ SPE Disk vs. Empore SPE Disk

• ENVI-Disk SPE Disk

- SPE Particles embedded in glass fiber matrix
- Available in C18 and C8
- Better flow properties but more resistant to clogging
- More prone to fines
- Empore SPE Disk
 - SPE particles embedded in a PTFE fiber matrix
 - Available in over 9 x different chemistries
 - Minimal fines but more prone to clogging
 - Clogging addressed via Empore Filter Aid
 - Compatible with ENVI-Disk Holder
- Both products written in dozens of EPA & other environmental methods

SIGMA-ALDRICH®

SPE Disks 3M Empore[™] SPE

Reduced SPE bed mass = Reduced solvent & elution volumes

- Minimizes SPE eluate evaporation time
- Potentially allows for direct injection of the SPE eluate

Dense & uniform extraction medium = NO channeling/voiding

Efficient mass-transfer kinetics allow for faster flow rates

47 mm Disks for Environmental Analysis

Empore SPE Disk Technology

SPE Particles tightly enmeshed in an inert PTFE matrix

- 90% SPE Sorbent; 10% PTFE (by weight)
- Dense particle packing (no void spacing)
- Uniform particle distribution
- Thin membrane, small bed volume
- High Surface Area / No Fines
- Smaller bed weights
- Shorter diffusion paths
- More efficient extractions

Resin-based

SIGMA-ALDRICH®

Official EPA Methods using Empore Disks

- 1664 (Rev. A) N-Hexane Extractable Material (HEM; Oil and Grease)
- **506** Phthalate and Adipate Esters in Drinking Water
- **507** Nitrogen– and Phosphorus-Containing Pesticides in Water
- **508.1** Chlorinated Pesticides, Herbicides, and Organohalides in Water
- 512.2 Chlorinated Acids in Water
- **525.2** Organic Compounds in Drinking Water
- **549.1** Diquat and Paraquat in Drinking Water
- **550.1** Polycyclic Aromatic Hydrocarbons in Drinking Water
- **552.1** Haloacetic Acids and Dalapon in Drinking Water
 - Benzidines and Nitrogen-Containing Pesticides in Water
- 1613 (Rev.B) Tetra- Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution e.g. in water
- SW846 Method 3535 Test Methods for TCLP Leachates
- QTM Aqueous Phases Quick Turnaround Methods
 - PAH

• 553

- Phenols
- Pesticides & PCBs

Tips to get good performance from extraction disks

Conditioning

- Prepares sorbent to interact with analytes
- Critical to good recovery and reproducibility
- Do not allow disk to go dry

Extraction

- Flow rate is not critical to recovery
- After sample, remove water by pulling vacuum

Elution

- Use multiple aliquots of elution solvent
- Use first aliquot to rinse out sample container
- Soak the disk for one minute with elution solvent prior to pulling vacuum

Q

SIGMA-ALDRICH

Application:

Polynuclear Aromatic Hydrocarbons

Method: US EPA 550.1

Disk: 47 mm Empore or ENVI-C18

- 1. Add 5 mL methanol and IS (if used) to 1 L water sample.
- 2. Wash disk w/5 mL methylene chloride.
- 3. Condition disk w/ 5 mL methanol followed by 5 mL dei. water.
- 4. Process sample through disk at a flow rate of 100 mL/min.
- 5. Elute the disk with 5 mL acetonitrile and 5 X 5 mL methylene chloride
- 6. Dry eluate through 3 gm anhydrous sodium sulfate.
- 7. Concentrate to 0.5 mL and analyze by HPLC

SIGMA-ALDRICH[®]

Application: Paraquat and Diquat from Water Method: US EPA 549.2 Disk: 47 mm Empore or ENVI-C8

- 1. Adjust 250 mL water sample to pH 7-9 using 10% NaOH or 10% HCl
- 2. Condition the disk as follows:
 - 1. 10 mL methanol
 - 2. 2 x 10 mL dei. water
 - 3. 10 mL conditionin soln. A*
 - 4. 2x 10 mL dei. water

elution

- 5. 20 mL conditioning soln. B*
- 3. Process sample through disk at a flow rate of 100 mL/min.
- 4. Add 1 mL methanol to disk; soak for 1 min.
- 5. Add 4 mL eluting solution* to disk, apply slight vacuum, and soak disk for 1 min.
- 6. Add 4 mL eluting solution* to disk and draw completely through.
- 7. (Add ion pair reagent concentrate to eluate, adjust final volume (if necessary) and analyze by HPLC/UV)

*see method 549.2 for composition of solution

Injection Volume: 1 µL

Carbon SPE ENVI-Carb[™] and ENVI-Carb[™] Plus

Carbon SPE

ENVI-Carb[™]

- Predominately GCB (graphitized carbon black)
- Unique Selectivity & Ideal for polar compounds
- Non-porous (adsorption) = faster flow rates
- •Example Applications
 - Chloroacetanilide and Chloroacetamide Herbicide Degradents (535.1)
 - Non-volatile pesticides (carbamate & thiourea) in drinking water
 - BNA Pesticides in ground water
 - Acidic herbicides in drinking water (515.2)
 - Nitrosamines in drinking water (521)

ENVI-Carb Adsorbent	C8- & C18-Modified Silica
graphitized carbon black	silane phase-modified silica gel
hydrophobic	hydrophobic
irregular 40-100µm particles	irregular 40-60µm particles
nonporous	porous (60-300Å)
surface area: 100m²/g	surface area: 400-600m²/g

Application: Use of Envi-Carb for pesticides in water

Pesticide Extraction from Drinking Water, Using ENVI-Carb Solid Phase Extraction Tubes

SPETube:

- Supelclean ENVI-Carb, 3mL/0.25g packing
- Tube Conditioning:
- 5mL methylene chloride: meth an ol (80:20)

1mLmethanol

- 10mL 2% acetic acid in water
- Drawsolutions through the packing bed consecutively.
- Keep packing bed wet until sample is added. Sample Addition:
- 100mL-1 liter drinkingwater(pesticide concentration:10-50µg/L)
- Drawsample through packing at a rate of 5mL/min.
- Accelerated rates do not have an adverse effect on recovery.
- Drying:
 - 1 minute, vacuum suction
- Sample Elution (base-neutral fraction):
- , 0.8-1mL methan ol
 - 2×3.5mL methyle ne chloride: methanol (80:20)
- Dry eluate under gentle nitrogen purge in a room temperature
- water bath to approximately 400-500 µL. For best recovery,
- wash inside wall of recovery vial with methanol,
- again dry to 400-500 µL.
- Reconstitutes amples to a constant volume of 1 mL, using methanol.
- Inject 20µL for HPLC analysis. Analysis can be automated.

HPLC Analysis

Pesticide recovery using ENVI-Carb

	Solid Phase ENVLCarb Tubes	e Extraction C8/C18 Silica*	
Analyta	n=5	n=4	
Analyte	Recovery (% ± star	iuaru deviauori)	
Oxamyl Methomyl Carbofuran	111 ±9.6 105 ±5.0 106 ±6.2	28 ±46 25 ±44 97 ±3.8	Low recoveries for polar pesticides on C18/C8
Fluometron Monuron	106 ±5.7 99 ±3.2	96 ±4.1 98 ±6.2	
Metribuzin Carbaryl Propham	97 ±3.9 97 ±3.5 95 ±3.2	43 ±25 90 ±12 76 ±23	
Propachlor Aldicarb	96 ±3.8 96 ±3.5	90 ±23 90 ±7.5 86 ±14	
Cyanazine Atrazine Diuron	90 ±5.4 89 ±5.7 88 ±5.7	99 ±10 74 ±14 91 +7.8	
Linuron	88 ±5.4	94 ±4.1	

100mLwater samples, 10-50µg/liter (ENVI-Carb extracts) or 20-500µg/liter (C8/C18 silica), HPLC/UV (ENVI-Carb extracts) or HPLC/MS (C8/C18 silica) analysis.
Data from Bellar & Budde, Anal. Chem., 60: 2076-2083 (1988).

15

Application: Use of ENVI-Carb for extraction of acidic herbicides

Extraction procedure

(automated using Zymark)

1. Condition 6 mL/250 mg ENVI-Carb tube w/ 10 mL water

- 2. Pass 900 mL sample through tube
- 3. Rinse tube w/10 mL water
- 4. Dry tube for 10 min.

5. Elute with 10 mL 80:20 methylene chloride: methanol containing .01% phosphoric acid

Minimal background from ENVI-Carb tube

Figures provided by A. Lichtman, Nassau County Dept. of Health, Hempstead, New 16 York, USA.

SIGMA-ALDRICH®

Acidic herbicide recovery using ENVI-Carb

Results: average recovery of 4 sample replicates spiked at 4-5 ug/L

	Analyte	% Recovery	Std. Dev.
Lower recovery due to strong retention on carbon	Tetrachloroterephthalic acid	15.7	-
	Picloram	91.5	2.3
	Dicamba	91	3.4
	2,4-D	88.3	7.1
	2,4,5-T	78.7	6.2
	2,4,5,-TP	84.7	9.9
	Dinoseb	95.7	5.7
	Dachtal	89.3	4.7
	Pentachlorophenol	69.5	7.6

- The smaller, more polar herbicides show good recoveries from ENVI-Carb.
- Tetrachloroerephthalic acid and pentachlorophenol are large with more planar structures. These are difficult to remove.

Carbon SPE

ENVI-Carb™ PLUS

Spherical Carbon Molecular Sieve

- Extraction of highly polar compounds from water samples
- > 70% Absolute Recovery from 0.5 L drinking water (1-100 ng/mL)

Procedure:

- Condition w/ 10 mL MeOH & 10 mL DI water
- 2. Load up to 1 L sample
- 3. Reverse tube & elute w/ 4-5 mL MeOH in opposite direction

Application: Analysis of Glycols In Water Using ENVI-Carb Plus

Current method requires direct aqueous injection (DAI)

- Water has a high vapor volume
 - Requires low injection volume and/or high inlet pressure to contain vapor cloud
- Poor peak shape
 - Especially early eluting compounds
 - Affects detection and quantitation
- Presence of matrix (such as salt) in a sample could easily foul the GC inlet and/or column.

Analysis of Glycols

Goals of New Method

- Eliminate direct aqueous injection (DAI) of samples for glycol analysis.
- Lower detection and quantitation levels.
- Use solid phase extraction to extract glycols from water matrices.
 - Achieve elution with an organic solvent
 - Inject sample extract in organic solvent into GC

Glycol SPE Extraction Method Using ENVI-Carb Plus

Extraction Cartridge	ENVI-Carb [™] Plus reversible cartridge, 1 ml/400 mg	
Cartridge Conditioning	1 ml methylene chloride , 2 x 2 ml aliquots methanol, 3 ml dei. water	
Sample	5 mL tap water spiked at 10 ug/ml	
Sample extraction	5 ml sample, 5 mm Hg	
Dry time	10 minutes, 10 mm Hg	
Elution	Cartridge in forward direction, 2 ml of methanol:methylene chloride, 80:20 (soak cartridge for 1 minutes prior to pulling through)	
Preparation for GC analysis	Added methanol to bring sample to final volume of 2 ml and analyzed directly	

Extraction method vs. DAI

Recovery and Reproducibility Evaluation

Comparison of extraction method with DAI

Absolute recovery from tap water spiked at 2 ug/ml, n=7

	DA	I	Extract	tion	
	Avg. % Recovery	%RSD n=7	Avg. % Recovery	%RSD n=7	
2-methoxyethanol	Not detected		96%	3	
2-ethoxyethanol			88%	3	
2-butoxyethanol	34%	30	94%	3	
Propylene glycol	106%	26	95%	6	
Ethylene glycol	114%	30	53%	16	
Diethylene glycol	56%	28	99%	6	
Triethylene glycol	77%	26	98%	Z	
High RSDs		EG, s difficu	mallest, m It to retain	ost hydrop on SPE	

Application: Extraction of 1,4-Dioxane from water using ENVI-Carb Plus

- •US EPA Method 522 describes several different sorbents for extraction, including ENVI-Carb Plus.
- Flow through design of cartridge allows it to be connected directly to a continuous flow pump.
- ENVI-Carb Plus cartridges can be reversed (if necessary) for efficient elution of analytes.

Analysis of 1,4-dioxane from water, extracted using ENVI-Carb Plus

Column: SPB-624; 30 m x 0.25 mm l.D. x 1.4 μm Inj. temp.: 200° C Oven: 30 ° C (1 min.), 13 ° C/min. to 90 ° C, 20 ° C/min. to 200 ° C (15 min.) MS interface: 220 ° C Carrier: helium, 1 mL/min constant

	1,4-dioxane-d8 (surrogate)	1,4-dioxane
Spike level (ug/L)	10	0.3
Avg. % Recovery	102	83
%RSD, n=9	6	4

Supel[™]-Select HLB

Supel[™]- Select HLB

- Hydrophilic modified styrene-based polymer
- •Can retain lipophilic and hydrophic compounds
- •Wide pH compatibility range (0-14)
- Imparts minimal extractables to samples
- Described in US EPA Method 1694 for the extraction of personal care and pharmaceutical compounds from water
- •Very reproducible lot-to-lot performance

Optical microscope picture of Supel-Select HLB resin

Extraction of Pharmaceutical & Personal Care Products (PPCPs) from Water using SupelSelect HLB

- US EPA Method 1694
- Method uses solid phase extraction (SPE) and LC-MS-MS for analysis of >70 PPCPs
- SPE used is hydrophilic/lipophilic balance (HLB)
 - Supel-Select HLB SPE

Extraction - based on method 1694

Extraction Cartridge	Supelco Select HLB SPE Tube, 500 mg/6 mL	
Sample	500 mL of drinking water spiked with Group 1 compounds, adjuste	d to pH=4 with 6M HCI
Tube Conditioning	20 mL of methanol, 6 mL of water, 6 mL of water at pH 2 (with 6 M	1 HCI)
Sample extraction	10 mL/min through tube	
Dry time	5 min	Note: Select Hits Notes Sel Women Transy
Elution	12 mL, 50:50 methanol:acetonitrile	
Dry down	40°C, under nitrogen stream	SSUPELCU Barry house
Reconstitution	To final volume of 2 mL using mobile phase	

column:	Ascentis Express C18, 10cm x 2.1 mm, I.D., 2.7 μm (53823-U)					
mobile phase A:	0.1% formic acid and 0.1 % ammonium formate					
mobile phase B:	50:50 methanol:acetonitrile					
temp.:	40 °C					
det.:	ESI (+),	MS/MS				
injection:	5 µL					
sample:	CS-5 Co	ncentratio	ons from I	EPA meth	od 1694	
gradient:	<u>min</u>	<u>mL/min</u>	<u>% A</u>	<u>% B</u>		
	0	0.15	95	5		
	4	0.25	95	5		
	22.5	0.30	12	88		
	23	0.30	0	100		
	26	0.30	0	100		
	26.5	0.15	95	5		

Fused core column for efficient, fast analysis

29

Recoveries of some PPCPs from spiked water samples extracted using Supel-Select HLB SPE

		SPE Spiking	
		Level	%
Compound	MRM Transition	(ug/L)	Recovery
Azithromycin	749.9-591.6	1	95
Caffeine	195.0-138.0	10	129
Carbadox	263.2-231.2	1	123
Ciprofloxacin	332.2-314.2	3,5	105
Clinafloxacin	366.3-348.1	4	48
Digoxigenin	391.2-355.2	4	128
Digoxin	781.5-113.1	10	136
1,7-Dimethylxanthine	181.2-124.0	100	86
Diphenhydramine	256.8-168.1	0,4	122
Enrofloxacin	360.0-316.0	2	83
Lomefloxacin	352.2-308.1	2	106
Miconazole	417.0-161.0	1	74
Norfloxacin	320.0-302.0	10	75
Ofloxacin	362.2-318.0	1	83
Ormetoprim	275.3-259.1	0,4	128
Oxolinic acid	244.1-216.1	0,4	77
Sarafloxacin	386.0-299.0	9,12	100
Thiabendazole	202.1-175.1	1	119

Key SPE Literature

Supel Select HLB Brochure T408148

SPE Methodology Wall Poster T409088

Dioxin & PCB Analysis

Environmental Sampling & Analysis Guide T412043

Thank you!

Associated Supelco Publications

- 1. Extract Polynuclear Aromatic Hydrocarbons from Water, Using Solid Phase Extraction Disks: Application Note 54 (T394054A).
- 2. Extraction of Paraquat and Diquat from Water, Using ENVI[™]-8 DSK Solid Phase Extraction Disks: Application Note 60 (T394060A).
- 3. ENVI[™]-18 SPE Tube Ensures Low Background from Monitoring Organic Compounds in Drinking Water by EPA Method 525: Application Note 65 (T395065A).
- 4. Extract Nonvolatile Pesticides from Drinking Water, Using a Graphitized Carbon Adsorbent. Application Note 27 (T394027B)
- 5. Solid Phase Extraction/HPLC Analysis of Acidic Herbicides in Drinking Water. Application Note 100 (T396100).
- 6. Stenerson, K.K.; Sidisky, L.M.; Betz, W.R.; Keeler, M.J.; McCoy, M.; Brown, J.. The Extraction of Glycols from Water Using ENVI-Carb[™] Plus Solid Phase Extraction Cartridges (T410135)
- 7. Santasania, C.T.; Stenerson, K.K.; Aurand, C.; Trinh, A.; Shirey R.E. Using Bonded Silica Solid Phase Microextraction Fibers as a Screening Tool for Pharmaceuticals and Personal Care Products in Drinking Water (T409139)

References

- Methods for the Determination or Organic Compounds in Drinking Water Supplement 1; EPA/600/R/4-90/020
- 2. Methods for the Determination of Organic and Inorganic Compounds in Drinking Water Volume 1; EPA 815-R-00-014
- Munch, J.W.; Grimmett, P.E. Method 522 Determination of 1,4-Dioxane in Drinking Water by Solid Phase Extraction (SPE) and Gas Chromatography/Mass Spectrometry (GC/MS) With Selected Ion Monitoring (SIM). Ver. 1; EPA /600/R-08/101; National Exposure Research Laboratory Office of Research and Development U.S. Environmental Protection Agency: Cincinnati, OH, Sept. 2008.
- 4. Method 1694: *Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS.* EPA-821-R-08-002; U.S. Environmental Protection Agency Office of Water Office of Science and Technology Engineering and Analysis Division (4303T): Washington, D.C., Dec. 2007.